

### Christ Church Grammar School

## **Year 12 Chemistry**

# Volumetric Analysis Validation Test 2018

45 minutes

Name: 30 Utaks

Marks: \_\_\_\_\_/46

Question 1 (20 marks)

Citric acid is a weak organic acid occuring naturally in many fruits, especially citrus fruits. It is very soluble and is often used as an additive to improve flavour and as a preservative. To determine the exact citric acid content in a popular energy drink, a titration with sodium hydroxide solution was used. The average citric acid content in energy drinks is 11.7 gL<sup>-1</sup>.

The standardised sodium hydroxide had a concentration of 0.0204 molL<sup>-1</sup>.

The formula for citric acid is  $C_6H_8$   $O_7$  and the structure of citric acid is shown below. It is triprotic and contains three carboxylic acid groups;

a) Using a calculation, determine if the energy drink requires dilution before titration. If dilution is required, provide a brief procedure outlining how you would perform this dilution using standard laboratory equipment.

m (citric acid) in 20mL = 11-7 x (20/1000)

= 0.234g

n (citric acid) in 20mL = 0.234 / 192.124

= 0.001218 moles

n (NaOH) required = n (citric) x3 = 0.003659 moles

V = n / c

V = 0.003659 / 0.0204

= 179 mL

Raxed on undrivited energy drink, a fitne volume of 179mL would be needed which is too high.

Tate a 25mL aliquot of energy drink and

Iransfer to a 250mL volumetric flatic (10x dil) hor).

1075

b) In a separate experiment, a student carried out a titration on some lemonade using standardised sodium hydroxide (concentration 0.097 molL<sup>-1</sup>). He found that 25.00 mL of lemonade had a mass of 27.90 g. He carried out the analysis on 25.00 mL aliquots of undiluted lemonade and obtained the following results using phenolphthalein as the indicator:

|                     | Volume of sodium hydroxide (mL) |       |       |       |       |  |
|---------------------|---------------------------------|-------|-------|-------|-------|--|
|                     | Rough                           | 1     | 2     | 3     | 4     |  |
| Initial volume (mL) | 0.90                            | 1.55  | 0.70  | 0.20  | 1.45  |  |
| Final volume (mL)   | 19.35                           | 19.75 | 19.00 | 18.80 | 19.70 |  |
| Titre volume (mL)   | 18.45                           | 18.20 | 18.30 | 18.60 | 18.25 |  |

| c) | Using the results above, calculate the average titre volume: | 10.70    |
|----|--------------------------------------------------------------|----------|
|    |                                                              | (1 mark) |
|    |                                                              |          |

d) Assuming all the acid present is citric acid and using your average titre volume, calculate the acid content of the lemonade in gL<sup>-1</sup> and as a percentage by mass. Use the appropriate number of significant figures to express your final answer.

e) Given that the lemonade is carbonated with CO<sub>2</sub>, is this a valid experiment? Use equations to justify your answer.

carbon doxide dissolver in water to produce carbonie acid, H2003. H2003 undergoer hydrolysis in water

H2003 + H20 2 H003 + H30+ As Here

Is carbonic and citie acid, the calculated acid is /

higher than the actual citic acid concentration.

(2 mark)

f) State the effect of rinsing the following equipment with the solution given on the apparent % acid in the lemonade.

|       | Equipment     | Rinsed with     | Effect on apparent acid co | ntent |
|-------|---------------|-----------------|----------------------------|-------|
| (i)   | Burette       | distilled water | Mcrease                    | V     |
| (ii)  | Pipette       | distilled water | Decrease                   |       |
| (iii) | Conical flask | lemonade        | Increase                   | /     |

|                                                   |                  |             |                           |         | (3 marks) |
|---------------------------------------------------|------------------|-------------|---------------------------|---------|-----------|
| g) Explain your response to part f) (iii)         |                  |             |                           |         |           |
| A known volume from                               | pipelle          | is to       | ansferi                   | red     | 110       |
| conteal flask. Rins                               | ing with         | lew         | ionacle                   | W       | uld       |
| increase the noctities                            | cid) pre         | sent        | furs                      |         |           |
| increasing the apparen                            |                  | id.         |                           | V       |           |
|                                                   |                  |             |                           |         | (2 marks) |
| Question 2                                        |                  |             |                           | (       | 10 marks) |
| An average titre volume of 14.85 mL was obtaine   |                  | 0.001) mol  | L <sup>-1</sup> of NaOH w | vas use | d to      |
| standardise a 20.00 (± 0.03) mL hydrochloric acid | solution.        |             |                           |         |           |
| a) Calculate the percentage uncertainty ass       | ociated with the | average tit | re volume.                |         |           |
|                                                   |                  |             |                           | 4.0     | 1         |
| 1. = 0.1/14.85                                    | x 100            | =           | 0.6                       | 73      | . /       |
|                                                   |                  |             |                           |         | (1 )      |
|                                                   |                  |             |                           |         | (1 mark)  |
| b) Calculate the percentage uncertainty of t      | he pipette used. |             |                           |         |           |
| 1. 0.07                                           |                  |             | 5.50                      | ١.      |           |
| 1 = 0.03 / 20.00                                  | × 100            | -           | 0.150                     | 1.      |           |
|                                                   |                  |             |                           |         |           |
|                                                   |                  |             |                           |         | (1 mark)  |

| c) | Calculate the concentration of the hydrochloric acid and the absolute error uncertainty associated |
|----|----------------------------------------------------------------------------------------------------|
|    | with the determined concentration.                                                                 |

 $n(Na0H) = CV = 0.704 \times 0.01485$ = 0.0030294 moles

n(HCI) = n(NaOH)= 0.0030294 moles ~

c(Ha) = n/V = 0.0030294/0.02

= 0.15147 mol L'V

1. error in concentration of NacH = 0.001/0.204 ×100

Total 1. error in conc. of HC1 = 0.490 + 0.673 + 0.150

Absolute eyror = (1.31/100) x 0.15147 = 0.00199 mol [

: L(H(1) = 0.151 = 0.002 mol L

(6 marks)

d) The sodium hydroxide in the above experiment was not a primary standard. It had to be prepared and then standardised. Give 2 reasons why NaOH is a poor primary standard.

1. Can't be obtained in pure form

2. Has a relatively 'low molar mass

(2 marks)

3. Is deliquersient

4. Reacts with co, in the air

(any 2).

#### **Question 3**

7 marks

Marble is composed mainly of calcium carbonate, CaCO₃, with some impurities.

A 1.20 g sample of marble was dissolved in 500.0 mL of 0.150 molL<sup>-1</sup> standardised hydrochloric acid. The mixture fizzed as carbon dioxide was produced. After the mixture finished reacting, the solution was then titrated with 20.00 mL of 0.100 molL<sup>-1</sup> NaOH solution. The average titre volume required was determined as 18.6 mL.

Calculate the percentage by mass of calcium carbonate in the sample of marble.

$$n(NavoH) = cV = 0.1 \times 0.02 = 0.002 \text{ moles}$$
   
 $n(HCI) = n(NavoH) = 0.002 \text{ moles of HCl in 18.6mL}$ 

$$n(HCI)$$
 in  $500ML = (500/18.6) \times 0.002$   
= 0.05376 moles

n CHCI) added = 
$$cV = 0.150 \times 0.5$$
  
= 0.075 moles

#### **Question 4**

4 marks

A sample of river water has a density of 1.01 gmL<sup>-1</sup> and contains 3.50% by mass of ethanoic acid. What volume of 0.600 molL<sup>-1</sup> sodium hydroxide is required to neutralise 20.00 mL of the river water?

m (20ML of river water) = 20 x 1:01 = 20.29

m (eth. dold)= 20.2 x (3.5/100)

= 0.7079

in 20ml sample

n (eth. add) = m/M

= 0.707 / 60.052

= 0.01177 moles

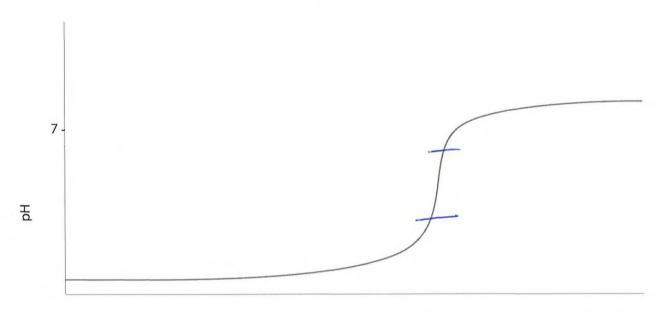
n (NavH) = n (eth. acid)

= 0.01177 moles

~ V = n/c

= 0.01177 /0.6

= 0.01961


= 19.6mL

Question 5

5 marks

A known concentration of ammonia solution is added to a nitric acid solution to determine the concentration of acid present.

The titration curve of the reaction is shown below.



#### Volume of ammonia added (mL)

- a) Methyl orange was correctly chosen as an appropriate indicator for the titration. Mark an approximate range for its colour change on the graph above. (1 mark)
- b) Using chemical equations to support your answer, explain why methyl orange is an appropriate choice for this reaction. Include the term 'equivalence point' and 'end point' in your response.

| The end point range of methyl orange is a<br>to the equivalence point for this titration<br>Ammonia reacts with acid according to | dose     |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|
| to the equivalence point for this titration                                                                                       | <u>n</u> |
| Ammonia reacts with acid according to                                                                                             | He       |
| equation, NH3 + H+ 2 NH4+U                                                                                                        |          |
| The NHyt undergoes hydrolysis accordi                                                                                             | ng to    |
| equation, NHz + H+ 2 NHy+ J  The NHy+ undergoes hydrolysis according to the equation, NHy+ H20 - NHz + Hz                         | , O1 V   |
| the [430+] increases, thus the pH                                                                                                 |          |
| equivalence is less than 7.                                                                                                       |          |

(4 marks)